
CHALMERS UNIVERSITY OF TECHNOLOGY, SE-412 96 Gothenburg, Sweden, +46 (0)31 772 10 00, www.chalmers.se

Matthías Páll Gissurarson

pallm@chalmers.se

Department of Computer Science and Engineering

Hole Fit Plugins for GHC
– making GHC hole fits customizeable for richer development and experimentation.

Problem

Valid hole fit suggestions were introduced in GHC

8.4 and extended in 8.6 and 8.8. However, since

they are bundled with GHC, their functionality is

hampered by the need for their implementation to

be compatible with GHC's distribution model. This

means that interacting with tools such as Hoogle,

QuickCheck and Djinn, constraint solvers such as

Z3, and machine learning tools is not an option.

Approach and Contributions

To alleviate the constraints that GHC's distribution

model places on valid hole fit suggestions, I have

extended GHC's plugin framework with a new type

of plugin, Hole Fit plugins. These allow developers

to write plugins that add, remove or re-order

candidate hole fits and hole fit suggestions. The

main result of this work is a patch that has been

merged to GHC HEAD that adds Hole Fit plugins,

which are expected to be generally available in

GHC 8.10.1. Additionally, three proof of concept

plugins have been written that interface with Djinn,

Hoogle and QuickCheck respectively. As an

example, the code shown to the right uses a

plugin that invokes Djinn to synthesize simple

functions, invokes Hoogle to search from the type

of the hole, and can filter by module, in addition to

showing the regular valid hole fit suggestions.

{-# OPTIONS -fplugin=DjinnHoogleModPlugin #-}

module Main where

import Control.Monad

f :: (a,b) -> a

f = _invoke_Djinn

g :: [a] -> [[a]]

g = _invoke_Hoogle

h :: [[a]] -> [a]

h = _module_Control_Monad

Found hole: _invoke_Djinn :: (a,b) -> a

Valid hole fits include

(\ (a, _) -> a)

(\ _ -> head (cycle (h (g ([])) ++ h (g ([])))))

f :: (a, b) -> a

fst :: forall a b.(a, b) -> a

Found hole: _invoke_Hoogle :: [a] -> [[a]]

Valid hole fits include

Hoogle: Data.List subsequences :: [a] -> [[a]]

Hoogle: Data.List permutations :: [a] -> [[a]]

g :: [a] -> [[a]]

repeat :: forall a. a -> [a]

Found hole: _module_Control_Monad:: [[a]] -> [a]

Valid hole fits include

h :: [[a]] -> [a]

join :: forall (m :: * -> *) a.

Monad m => m (m a) -> m a

msum :: forall (t :: * -> *) (m :: * -> *) a.

(Foldable t, MonadPlus m) =>

t (m a) -> m a

forever :: forall (f :: * -> *) a b.

Applicative f => f a -> f b

Background

Richly typed functional programming languages

facilitate a style of programming called Type-

Driven Development (TDD), in which users

allow the types in a program to guide

development. This style encourages the

programmer to provide as much typing to the

compiler up front as they can, which means that

there is a lot of information available to the

compiler to produce rich, informative error

messages.

Typed-holes were added in GHC 7.8 to allow

developers to interact with this typing

information, by making the compiler produce an

informative error message when a hole (denoted

by a '_') is encountered in an expression in the

code. The error message was extended further

in GHC 8.4, 8.6 and 8.8 with valid hole fit

suggestions, which uses the typing information

and functions in scope to suggest valid

expressions that can be put in place of the hole.

Compiler plugins are a feature of GHC that

allow users to write plugins that are invoked at

particular times during compilation. Type

Checker plugins allow users to extend the type

checker, Core plugins apply transformations to

GHC's intermediate language Core, and Source

plugins allow users to change the compilation

pipeline at various stages: after parsing, after

type checking, after renaming, during macro

expansion, and when modules are being loaded.

Code

GHC

Error Message

Candidate Plugins

Fit Plugins

Type Checker
Typed-Hole

TcM Context

CandPlugin :: TypedHole -> [HoleFitCandidate] -> TcM [HoleFitCandidate]

FitPlugin :: TypedHole -> [HoleFit] -> TcM [HoleFit]

https://git.io/fj78g

